Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis

نویسندگان

  • Jicong Fan
  • Youqing Wang
چکیده

Article history: Available online 20 June 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent and small fault detection and diagnosis for dynamic processes

Compared to large process faults, the latent and small ones are difficult to be detected. However, the accumulation of these faults may even more harmful to the process. A novel fault detection and diagnosis method is proposed which is based on similarity factor and a variable moving window. The new method is based on the idea that a change of process can be reflected in the distribution of the...

متن کامل

Design of Instrumentation Sensor Networks for Non-Linear Dynamic Processes Using Extended Kalman Filter

This paper presents a methodology for design of instrumentation sensor networks in non-linear chemical plants. The method utilizes a robust extended Kalman filter approach to provide an efficient dynamic data reconciliation. A weighted objective function has been introduced to enable the designer to incorporate each individual process variable with its own operational importance. To enhance...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Online Statistical Monitoring and Fault Classification of the Tennessee Eastman Challenge Process Based on Dynamic Independent Component Analysis and Support Vector Machine

This paper presents a new online statistical monitoring based on dynamic independent component analysis (DICA) to detect the Tennessee Eastman challenge process faults. The proposed method employs dynamic feature extraction approach to capture most of the inherent dynamic fault information. This leads to an efficient fault detection with superior performance compared to independent component an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2014